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Abstract
The traditional convergence analysis of Gradient Descent (GD) assumes the step size to be bounded
from above by twice the reciprocal of the sharpness, i.e., the largest eigenvalue of the Hessian of
the objective function. However, recent numerical observations on neural networks have shown
that GD also converges with larger step sizes. In this case, GD may enter into the so-called edge
of stability phase in which the objective function decreases faster than with smaller steps, but
nonmonotonically. Interestingly enough, this same behaviour was already observed roughly 40
years ago when the first nonmonotone line search was proposed. These methods are designed
to accept larger steps than their monotone counterparts (e.g., Armijo) as they do not impose a
decrease in the objective function, while still being provably convergent. In this paper, we show
that nonmonotone line searches are able to operate at the edge of stability regime right from the start
of the training. Moreover, we design a new resetting technique that speeds up training and yields
flatter solutions, by keeping GD at the edge of stability without requiring hyperparameter-tuning
or prior knowledge of problem-dependent constants. To conclude, we observe that the large steps
yielded by our method seem to mimic the behavior of the well-known Barzilai-Borwein method.

1. Introduction

Gradient descent (GD) and its stochastic variant stochastic gradient descent (SGD) [26] are crucial
to the successes of deep learning activity today. In order to prove their convergence, it is com-
mon to impose strict requirements on the step sizes (e.g., infinitesimal [4], diminishing [6, 16, 18],
bounded by twice the reciprocal of the sharpness [20]) that are not met by step size choices used in
practice. In fact, depending on the local curvature, GD may be employed with larger steps and it
may converge much faster [7]. It has been shown across a consistent set of experiments on various
architectures that the training of neural networks via GD with a step size η goes through two distinct
phases [7]. In the first phase (progressive sharpening), the loss function decreases monotonically
while the sharpness (the largest eigenvalue of the Hessian of the training loss function) increases.
In the second phase (edge of stability), the loss decreases nonmonotonically, while the sharpness
stabilizes around 2/η. While the ability of GD to converge nonmonotonically may be surprising, a
deeper study reveals that the same behavior was already observed when employing nonmonotone
line search methods [14, 35] (see the work by Galli [11] for a literature review). The first nonmono-
tone line search [14] was proposed in the 1980’s to accept (large) step sizes that may not lead to
monotonic decrease of the objective function f . The convergence of these methods can be proven
without imposing a monotonic descent in the objective function [14]. Recent work showed that SGD
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combined with a nonmonotone line search [12] converges faster than its monotone counterpart [31]
when training deep neural networks.

The interest in large step sizes has rapidly grown as a consequence of the results in Cohen et al.
[7]. Various effects of large step sizes have been proven in the recent literature, e.g., speeding up
convergence [33], escaping sharp minima [19], learning “threshold-like” neurons [1], improving
generalization [25]. On the other hand, the definition of “large” and “small” steps is incoherent
between papers [19, 32], as these concepts are clearly problem-dependent. Moreover, it is a priori
unclear if GD with a certain step η will hit the edge of stability or not. Both these open questions
are related to GD’s inability of adapting to f , at least when employed with a constant step η. The
ability of adapting to the underlying problem and inherently estimating the local Lipschitz smooth-
ness L, a.k.a. sharpness, was instead previously proven for a nonmonotone line search called the
universal gradient method [21]. In this paper, we propose to study these unexplored connections to
nonmonotone line searches to provide a problem-independent algorithm able to find and operate at
the edge of stability. Our contributions are summarized below.
• We show empirically that nonmonotone methods operate at the edge of stability right from the

start of the training for deep neural networks and yield steps that are always beyond 2
L . Moreover,

we design a new resetting technique that selects large enough initial step sizes to force the non-
monotone line search methods to remain at the edge of stability. The resulting method achieves
fast convergence while finding solutions that are flatter than its monotone counterparts. This tech-
nique is problem independent and does not require hyper-parameter tuning.

• We propose a new on-the-fly estimation of the sharpness L, and show that it more closely ap-
proximates L than the value 2/η, as indirectly suggested in Cohen et al. [7]. We draw a further
surprising connection between large nonmonotone steps and Barzilai-Borwein (BB) [5] step sizes.

2. Related Works

The work by Cohen et al. [7] has led to a flurry of papers studying the edge of stability phenomenon.
The self-stabilization of the sharpness around 2/η is explained by observing that, as the iterates di-
verge in the direction of the top eigenvector of the Hessian, the cubic term in the Taylor expansion
of the loss function decreases the curvature until stability is restored [8]. However, this result as-
sumes the occurrence of progressive sharpening, an observation that has no theoretical justification
yet. The phenomenon of loss increase and sudden decrease with the annexed stabilization of the
largest eigenvalue λ1 was independently called catapult in Lewkowycz et al. [17]. With the focus
on 2-dimensional functions, the authors of [32] propose a new measure of the regularity of a func-
tion and suggest that edge of stability, catapults and other effects of large step sizes correlate to high
values of this degree of regularity.

The existing analyses [1, 19, 25, 32] only take into account GD with constant step sizes, while
in this paper we will focus on the effects of large adaptive steps yielded by nonmonotone line
search methods. In this context, line search methods were not considered until recently in the
work by Roulet et al. [28]. In this concurrent work, the authors discuss monotone line searches and
propose a curvature-aware step size scheduler that forces gradient descent to hit the edge of stability.
However, this method relies on setting a hyperparameter, which when poorly selected can lead to
the method diverging. To the best of our knowledge, none of the prior works consider nonmonotone
line searches. Another connection to [28] is that both monotone and nonmonotone line searches are
intrinsically curvature/sharpness-aware. In fact, a piece of evidence that went partially unnoticed in
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the literature is that these methods yield step sizes that, in some scenarios, can go provably beyond
the value 2/λ1 (see Lemma 1 below and the discussion around it).

3. Methods

In this paper, we focus on GD with different step size choices: constant step sizes, Armijo line
search [3] as described in (1), and nonmonotone methods of the type described in (2).

f(wk − ηk ∇f (wk)) ≤ f(wk)− cηk∥∇f (wk)∥2, with c ∈ (0, 1), (1)

f(wk − ηk∇f(wk)) ≤ Ck − cηk∥∇f(wk)∥2, with c ∈ (0, 1),

Ck = max
{
C̃k; f(wk)

}
, C̃k =

ξQkCk−1 + f(wk)

Qk+1
, Qk+1 = ξQk + 1.

(2)

For both line search methods, we follow the classical backtracking procedure of starting with an
initial step size ηk,0 and reducing it by β ∈ (0, 1) until the condition is fulfilled.

In the optimization literature, the value ηk,0 has often played a secondary role [9, 22, 31]. How-
ever, this parameter directly controls the final step size, i.e., ηk = ηk,0β

lk , where lk ∈ N is the
smallest integer for which (1) or (2) is satisfied and counts the amount of cuts or backtracks of
the line search procedure. When no backtracks are performed (lk = 0), the final step size is just
the initial step size for the given iteration, i.e., ηk = ηk,0. Beyond that, if ηk,0 is too small (e.g.,
ηk,0 << 2/L), ηk,0 will never be reduced and GD will ultimately behave exactly like a GD with
a small constant step. In the context of edge of stability, this means that the iterates may never hit
the nonmonotone phase [7]. We corroborate this argument by reporting a deterministic version of
Lemma 1 from [12].

Lemma 1 Let f be L-Lipschitz smooth. Given an initial step size ηk,0 > 0, then the step size ηk
returned by (2) and (1) is either {

ηk = ηk,0 if lk = 0,

ηk ≥ 2β(1−c)
L if lk > 0.

(3)

This lemma ensures that if the initial step size ηk,0 is cut at least once (i.e., lk > 0), ηk will be larger
than 2β(1−c)

L . With the values of β and c being 1
2 (also used in the experiments below), the resulting

bound ensures that if lk > 0, ηk ≥ 1
2L . Additionally, one could also choose β≈1 and c≈0 to ensure

ηk ≳ 2
L , but the line search procedure would become very expensive in terms of backtracks as with

β ≈ 1 we will barely move away from ηk,0. On the other hand, nonmonotone line searches may
both help in reducing the amount of backtracks and choosing a larger step size. While a provable
lower bound on ηk specific to nonmonotone line searches is still elusive and will be the focus of
future work, the numerical results (last row of Figure 2) show that these methods yield steps that
are always larger than 2

Lk
, with peaks of 6

Lk
, where Lk is the local Lipschitz-smoothness constant

(Lk ≤ L).
Lemma 1 is thus suggesting that to provably achieve large enough step sizes, one needs to ensure

a cut at each iteration. To obtain this, we propose a new resetting technique that yields large initial
steps ηk,0 without prior knowledge of the Lipschitz smoothness constant L. When combined with
Armijo (1) or the nonmonotone line search (NLS) (2), we call the resulting methods Armijo-noTune
and NLS-noTune, as they automatically select both ηk,0 and ηk. These methods select ηk so that the
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corresponding line search condition (either (1) or (2)) is satisfied with equality (approximately) by
selecting a large enough initial step size ηk,0. In particular, for the Armijo-noTune and NLS-noTune
methods, the initial step size for each iteration is set as follows:

ηk+1,0 =

{
ηk,0 · 1

δk
δk ∼ N (12 , 1), δk ∈ [0.1, 0.9] if lk = 0,

ηk,0 if lk > 0.

Simply put, if the line search does not perform any backtracks, the initial step size is increased.
Otherwise, the initial step size is left unchanged. We compare these methods with the deterministic
versions of SLS [31] and PoNoS [12], called Armijo and Polyak NLS (PoNLS) respectively. See
Appendix B for more details on the methods discussed.

4. Numerical Results

Following the experimental setup in Roulet et al. [27], we train all models on a subset of 4096
instances of the CIFAR10 dataset. We address the classification task with 3 different models, a
Convolutional Neural Network (CNN) with 2 convolutional layers and a final linear layer, a resnet34
[15], and a vgg11 [30]. In all the experiments, we train the models with full batch GD and the mean
square error loss function. Finally, for all line searches, we set β = 0.5. See Appendix B for more
experimental details.
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Figure 1: Training loss for gradient descent with 2 variants of Armijo line search and 2 variants
of nonmonotone line search respectively. Non-monotone line searches converge faster than their
monotone counterparts.

In Figure 1, we plot the training loss of Armijo, Armijo-noTune, PoNLS and NLS-noTune. Fig-
ure 1 confirms that large (nonmonotone) steps improve the speed of convergence [12] and hints that
both Armijo-noTune and NLS-noTune are at least competitive with Armijo and PoNLS, respec-
tively.

In Figure 2, we plot the training loss, the sharpness, and the sharpness * step size for Armijo-
noTune, NLS-noTune and GD with 3 constant steps, i.e., GD-small, GD-medium and GD-large.
Earlier work showed that monotone Armijo line search does not hit the edge of stability, as it keeps
increasing the sharpness over time [27]. However, we show that nonmonotone line searches almost
directly operate at the edge of stability. We see that the training loss decreases nonmonotonically, its
sharpness is stable, and the sharpness * step size values are consistently above the edge of stability
threshold of 2. Moreover, NLS-noTune yields flatter solutions, as in the majority of the iterations it
yields the largest step sizes of the methods discussed (see Figure 5 in Appendix C).

In the top row of Figure 3, we plot for both Armijo-noTune and NLS-noTune the sharpness and
the newly proposed approximation of L (Lapprox) obtained by treating the Descent Lemma [20] as
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Figure 2: Training loss (Top Row), sharpness (Middle Row), and sharpness * step size (Bottom
Row) for gradient descent with Armijo-noTune line search, NLS-noTune line search, and 3 constant
step sizes. The sharpness of the monotone Armijo-noTune line search increases with time and the
algorithm does not hit the edge of stability. The sharpness of the nonmonotone NLS-noTune method
stabilizes and the sharpness * step size is consistently above the threshold of 2 for all three models.

an equality and solving for L. The details of Lapprox are given in Appendix A. Interestingly, the
sharpness and Lapprox values are very close to each other for NLS-noTune, while not as close for
Armijo-noTune. Moreover, for the NLS, Lapprox better approximates the sharpness than the value
of 2/η, indirectly suggested by the edge of stability literature [7] (see Figure 6 in Appendix C).

In the bottom row of Figure 3, we compare the sharpness with two approximations of L pro-
posed in the work by Shi and Guo [29], i.e., the following Barzilai and Borwein [5] (BB) formulas

LBB1 =
|yTk sk|
||sk||2

LBB2 =
||yk||2

|yTk sk|
, with sk := wk − wk−1, yk := ∇f(wk)−∇f(wk−1).

We plot the relative error (i.e., |sharpness−LBB |
sharpness ) of approximating the sharpness with LBB1 or LBB2 .

The values LBB1 and LBB2 yield good estimations of the sharpness when employing NLS-noTune
on two out of the three experiments (CNN and vgg11). When the monotone counterpart is instead
employed, only LBB2 approximates L well on one out the three models (CNN). Consistently among
these experiments, we can observe that LBB1 and LBB2 are very close to each other only when
large nonmonotone steps are used. Based on this observation and following the derivation in the
Appendix A, our results suggest that GD with the large (nonmonotone) steps yielded by NLS-
noTune approximately behave like GD with a BB step, without computing Rayleigh quotients.
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Figure 3: Top Row: Sharpness and an approximation of the Lipschitz constant via the Descent
Lemma, which we call Lapprox. The sharpness and Lapprox values are very close to each other for
NLS-noTune method, but not for the monotone Armijo-noTune method. Bottom Row: Relative
error committed by Barzilai-Borwein formulas LBB1 and LBB2 in approximating the sharpness.
For the CNN and vgg11 models, these formulas are good approximations of the sharpness when
using the NLS-noTune method, while they are poor for the monotone Armijo-noTune method.

5. Conclusion

We analyze the sharpness trajectory of nonmonotone line searches and compare these results to
that of their monotone counterparts. We see that unlike the monotone case, nonmonotone line
searches are able to hit the edge of stability and continue operating in this regime throughout train-
ing. This property is enforced by a newly designed resetting technique that automatically selects
large initial step sizes without prior knowledge of the Lipschitz smoothness L. The resulting method
achieves fast training convergence and yields solutions that are generally flatter than those yielded
by monotone methods. Despite the ongoing debate on the relationship between sharpness and the
generalization abilities of neural networks [2], low sharpness solutions were recently proven to be
approximately equivalent (at least for deep linear networks) to nuclear-norm-regularized solutions
[13]. This inductive bias suggests that flatter solutions are more likely to be sparse and, thus, overall
desirable over denser solutions.

Following up on Figure 3, we intend to further assess the ability of line search methods to es-
timate the local Lipschitz constant L in other settings and exploit these good estimations to design
new adaptive (stochastic) line searches that will be completely hyperparameter-free following some
existing work [23, 29]. Moreover, we intend to investigate further the connection between large
nonmonotone steps and BB steps. In light of Figure 3 and its consequences, we suspect that the ad-
vantages of BB [24] on nonquadratic functions may not be traced back to its ability of occasionally
hitting an eigenvalue of the Hessian [10], but instead to its large steps.
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Appendix A. Mathematical Details

A.1. Proof of Lemma 1

Lemma 1 Let f be L-Lipschitz smooth. Given an initial step size ηk,0 > 0, then the step size ηk
returned by (2) and (1) is either {

ηk = ηk,0 if lk = 0,

ηk ≥ 2β(1−c)
L if lk > 0.

(4)

Proof Let us give the proof only for (2). For the use of (1), simply replace Ck with f(wk). Let us
denote gk := ∇f (wk). As f is L-smooth, we apply the Descent Lemma on wk−ηkgk and wk to get

f(wk − ηkgk) ≤ f(wk) + gTk (wk − ηkgk − wk) +
η2kL

2
∥gk∥2

= f(wk)−
(
ηk −

η2kL

2

)
∥gk∥2,

which can be rewritten as

f(wk − ηkgk) ≤ pk(ηk), with pk(η) := f(wk)−
(
η − η2L

2

)
∥gk∥2. (5)

Note that (5) is valid for any η. Let us rewrite (2) as

f(wk − ηkgk) ≤ qk(ηk), with qk(η) := Ck − cη∥gk∥2.

Now, the backtracking procedure in (2) admits two possible output:
Case 1: lk = 0. In this case, we have ηk = ηk,0.
Case 2: lk > 0. In this case, we have ηk < ηk,0 with f(wk − ηk

β gk) > qk(
ηk
β ). Then, we have that

qk(
ηk
β ) ≤ pk(

ηk
β ) because qk(

ηk
β ) > pk(

ηk
β ) would lead to a contradiction. In fact

f

(
wk −

ηk
β
gk

)
> qk

(
ηk
β

)
> pk

(
ηk
β

)
≥ f

(
wk −

ηk
β
gk

)
is false. Thus, it has to be qk(

ηk
β ) ≤ pk(

ηk
β ), from which we get that

f(wk)− c
ηk
β
∥gk∥2 ≤ Ck − c

ηk
β
∥gk∥2 ≤ f(wk)−

(
ηk
β

−
η2kL

2β2

)
∥gk∥2

and consequently

−c ≤ −
(
1− ηkL

2β

)
⇔ ηk ≥ 2β(1− c)

L
,

which leads to (4).

10
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A.2. Derivation of Lapprox

Note that Lapprox is computed by treating the descent lemma

f(wk+1) ≤ f(wk)− ηk(1−
Lηk
2

)∥∇f (wk)∥2,

as an equality, and solving for L. Then

Lapprox =
2 (f(wk+1)− f(wk))

η2k||∇f(wk)||2
+

2

ηk
.

A.3. Barzilai-Borwein Approximation Derivation

As discussed in Section 4, when using large monotone steps, we observe that LBB1 ≈ LBB2 . Using
this, we can derive by Cauchy-Schwarz that there exists α ∈ R : sk ≈ αyk. This implies that GD
with large step sizes loosely solves a secant equation (as in Quasi-Newton methods [22]) where the
Hessian is approximated by a scaled identity matrix (as in the BB method [5]). In particular, if we
assume that LBB1 = LBB2 then

||∇f(wk+1)−∇f(wk)||2

|(wk+1 − wk)T (∇f(wk+1)−∇f(wk)|
=

|(wk+1 − wk)
T (∇f(wk+1)−∇f(wk)|

||wk+1 − wk||2

which can be rewritten as

||∇f(wk+1)−∇f(wk)||2 · ||wk+1 − wk||2 = |(wk+1 − wk)
T (∇f(wk+1)−∇f(wk))|2

≤ ||wk+1 − wk||2 · ||∇f(wk+1)−∇f(wk)||2

by Cauchy-Schwarz. In particular, it means that Cauchy-Schwarz holds as an equality which implies
that wk+1 − wk and ∇f(wk+1)−∇f(wk) are linearly dependent, i.e.,

∃α : wk+1 − wk = α(∇f(k + 1)−∇f(wk))

as required. In other words, our results suggest that GD with large (nonmonotone) steps yielded
by NLS-noTune approximately behave like GD with a BB steps, without computing any Rayleigh
quotients.

Appendix B. Additional Experimental Details

B.1. Models

All the models use the PyTorch default for the initialization of model parameters. We include bias
parameters in all of our models. The CNN model consists of the following structure:
• convolutional layer with 3 input channels and 32 output channels
• ReLU activation
• average pooling layer
• convolutional layer with 32 input channels and 32 output channels
• ReLU activation
• average pooling layer
• linear layer with input size 2048 and output of size 10
For the resnet34 and vgg11 experiments, we use the Pytorch implementations of the resnet34 and
vgg11 models. Similarly to Roulet et al. [27], we remove all batch normalization layers in the
resnet34 experiments, and do not use any dropout in the vgg11 experiments.

11
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B.2. Optimization

For all line search methods, c = 0.5 and β = 0.5. The maximum step size is set to 10 for all line
search methods. For the Armijo line search, the initial step size is set to 1 on each iteration. For
the PoNLS line search, the initial step size is set using the Polyak step size on each iteration, see
the work by Galli et al. [12]. We do not use any regularization in our experiments. For the CNN
and resnet34 experiments, we train for 6000 epochs. For the vgg11 experiments, we train for 4000
epochs.

B.3. Calculation of Sharpness

For the experiments that compute the sharpness, the sharpness is computed using the eigenvalues
function in the PyHessian package [34], with the maxIter parameter set to 100, tol parameter set to
10−3, and the top n parameter set to 1.

B.4. Plotting

For all of our plots, we plot the corresponding value every 10th epoch. For all the sharpness * step
size plots, we also take the average over a window of 50 points to smooth the results for each point.
For the plots in Figure 3 (bottom row), as well as Figures 6, 7, and 8, we instead take the average
over a window of 10 points. To achieve this, we use the numpy function convolve, with v parameter
set to np.ones(window-size)

window-size and the mode parameter set to “valid”.

Appendix C. Additional Experiments

In Figure 4, we see that for both monotone line searches, the sharpness continues to increase a
lot with time. For the nonmonotone line searches, we do not see this large increase in sharpness
with time. We show in Figure 4 that although the monotone line searches lead to values above the
threshold of 2 for sharpness * step size, we see that this is due to larger sharpness values as well as
smaller stepsizes (see Figures 4 and 5) than those seen with the nonmonotone line searches.

In Figure 6 we plot the relative error (i.e., |sharpness−approx|
sharpness ) of approximating the sharpness where

approx is either Lapprox discussed in Section 4 or 2/η, where η is the step size. In the case of the
monotone line search, both choices seem to be poor at approximating the sharpness. For the non-
monotone line search, Lapprox is comparable to or a better approximation of the sharpness than the
value of 2/η. An overlooked side effect of the edge of stability phenomenon is that GD estimates
the sharpness L with the value 2/η while in this phase. In the case of the CNN model and VGG11
model, Lapprox achieves a low relative error of around 10% or less in most iterations.

In Figures 7 and Figure 8, we consider an additional approximation of L proposed in [29], i.e.,
the following Barzilai-Borwein (BB) [5] formula

LBB3 =
||yk||
||sk||

with sk := wk − wk−1, yk := ∇f(wk)−∇f(wk−1).

We also consider the LBB1 and LBB2 formulas as well as Lapprox as before. Finally, we plot the
relative error (i.e., |sharpness−approx|

sharpness ) of approximating the sharpness where approx is one of the 4
metrics dicussed. In Figure 7 we focus on the monotone Armijo free method, and in Figure 8 we
look at the nonmonotone NLS method. We see in Figures 7 and Figure 8 that Lapprox is at least

12
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competitive with LBB1 , LBB2 , and LBB3 for the non-monotone line search, but this is not the case
for the monotone line search. Additionally, for the monotone line search, we see that in most cases
all 4 of the chosen metrics seem to be poor approximations of the sharpness.
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Figure 4: In this plot we show the sharpness (Top Row), sharpness * step size (Middle Row), and
step size (Bottom Row) for 2 variants of gradient descent with Armijo line search and 2 variants of
gradient descent with nonmonotone line search.
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Figure 5: We plot the step size for gradient descent with Armijo-noTune line search, NLS-noTune
line search, and 3 constant step sizes. The nonmontone NLS-noTune method uses larger (often
significantly larger) step sizes than the Armijo-noTune method.
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Figure 6: We plot the relative error in approximating the sharpness using 2/η and an approximation
of the Lipschitz constant via the Descent Lemma, which we call Lapprox. We observe that both
metrics are poor approximations of the sharpness when using the monotone Armijo-noTune method.
For the nonmonotone NLS-noTune method, Lapprox achieves low relative error and is about as good
or better at approximating the sharpness than the 2/η metric.
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Figure 7: In this figure, we focus only on the Armijo-noTune method. We plot the relative error in
approximating the sharpness using the LBB1 , LBB2 , and LBB3 formulas as well an approximation
of the Lipschitz constant via the Descent Lemma, which we call Lapprox. In all cases other than using
the LBB2 formula with the CNN model, all 4 metrics are poor approximations of the sharpness.
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Figure 8: In this figure, we focus only on the NLS-noTune method. We plot the relative error in
approximating the sharpness using the LBB1 , LBB2 , and LBB3 formulas as well an approximation
of the Lipschitz constant via the Descent Lemma, which we call Lapprox. For the CNN and vgg11
models, the 4 metrics have low relative error in approximating the sharpness. For each of the 3
models, the relative error for each of the metrics are very close in value.
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